Simulation of Electric Drives
Flexible Environment for Enhanced Testing
Matthias Deter, Munich, November 20, 2019
1. Introduction
2. Basic Considerations
3. Signal Level Simulation
4. Summary
Introduction
Signal Level Motor Simulation

Advantages
- Most flexible and scalable approach
- Most cost-efficient approach
- No special safety restrictions
- Low space and power requirements
dSPACE Hardware-in-the-Loop Testing Systems

<table>
<thead>
<tr>
<th>SCALEXIO Desktop</th>
<th>SCALEXIO Rack Version</th>
<th>SCALEXIO Rack Version</th>
<th>Electric Benches</th>
<th>Mechatronic Benches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-the-shelf</td>
<td>Off-the-shelf</td>
<td>Customized</td>
<td>Customized</td>
<td>Customized</td>
</tr>
</tbody>
</table>

dSPACE World Conference 2019
General Considerations
Electric Drive Simulation – Motor

Requirement Identification
- Motor-specific characteristics
- Control-specific model demands
- Application-specific precision demands

The Challenge
- Finding the right degree of precision for drive virtualization
- Balancing real-time performance, flexibility, and simulation fidelity
- Optimal cost-benefit outcome
Electric Drive Simulation - Inverter

Relevant Components
- Infeed or battery
- DC link
- Inverter

Basic Considerations
- Overall topology
- Applied power switches

Simulation Requirements
- Motor operation
- Generator operation
- Simulation of losses
- Simulation of faults
Signal Level Simulation
Hardware-in-the-Loop Simulation of Electric Drives

- **ASM Electric Components**
 Electric drive models for processor-based simulations

- **XSG Electric Components**
 Electric drive models for FPGA-based simulations

- **dSPACE Generic Drive Model (GDM)**
 Advanced Electrical drive models for FPGA-based simulations

Hardware

- **SCALEXIO real-time hardware**
 - Cutting-edge processors
 - Latest XILINX FPGA technology

Software

- **Emulator**
 - High-performance
 - Parallel operation
 - Power recovery
 - 60 V up to 10 kW (19” unit)
 - 800 V up to 500 kW (control cabinet installation)

- **Test bench**
 - High-performance
 - Low-latency connection
 - 8 kHz communication rate
 - Turn-key benches for steering and braking systems as well as ECUs with integrated sensors

Signal Level Simulation

Power Level Simulation

Mechanical Level Simulation
Signal Level Simulation of Electric Drives

Internal signals of the ECU have to be accessible

- Power electronics control (e.g., gate driver signals)
- Current sensor feedback (e.g., simulation of hall transducer feedback voltage)
- Position sensor feedback (e.g., interfaces for resolver simulation)

Real-Time Platforms

- Processor
- FPGA

Fidelity

- FPGA-based Simulation
- Processor-based Simulation
Processor-Based Simulation - SCALEXIO EMH Solution

All-in-one I/O solution
- Outstanding I/O dynamics
- Scalable I/O count
- Flexible I/O mapping
- Easy to apply

Extensive function library
- Pulse-width modulation
- Angular processing unit
- Position sensor simulation
- General-purpose I/O
Processor-Based Simulation - ASM Electric Components Library

Features at a glance
- **Ready-to-use** mean value models for electric drive simulation
- **Immediate results** with preconfigured demo models
- **Simple parameterization** thanks to ModelDesk

Main model components
- PMSM (d/q-frame)
- PMSM nonlinear (d/q-frame)
- BLDC (α/β-frame)
- SCIM (d/q-frame)
- Three-phase inverter
- Three-level three-phase inverter
- **Controller** (BLDC, PMSM, SCIM)
FPGA-Based Simulation - SCALEXIO FPGA Base Boards

Features at a glance

- User-programmable FPGA
- Modular concept for application specific I/O
- Constant technology renewal
- 4 Multigigabit transceivers 1)
- 4 GByte external RAM on board 2)

1) Optional available for DS6601 & DS6602
2) Available for DS6602 only
FPGA-Based Simulation - XSG Electric Components Library

Features at a glance

- Completely **open models** for Simulink® and Xilinx® System Generator
- Includes **e-drive models** and mandatory I/O functions
- **Demo models** including controller, power electronics, electric motor, and sensors

Main model components

- **PMSM** (d/q-frame)
- **BLDC** (α/β-frame)
- **SCIM** (α/β-frame, d/q-frame)
- **Three-phase inverter**
- **Positon Sensors** (e.g., resolver, encoder)
- **Mechanics model**
dSPACE Electric Drive Models

Processor-based simulation
- PWM-synchronous mean value models of established 3~ drives
- Full traceability of model signals

FPGA-based simulation
- Quasi-continuous calculation of established 3~ drives models
- Control of electronic loads possible

Additional features
- Multi-phase drives
- Nonlinear effects simulation
- Failure simulation
FPGA Model Improvements - Motivation

Identified Trends

- **New motor topologies** applied to fulfill increasing demands, e.g., for safety critical applications
- High-performance current and torque controller consider **spatial harmonics**
- Fail-safe tests require **physical correct simulation of electrical faults**
- **Sensorless motor control** more and more established for cost and weight reduction
dSPACE Generic Drive Model - Overview

Addressed model features

- Support of multi-phase drives (≥3) including two-level inverter model
- Support of various motor types (PMSM, IPM, BLDC, SCIM, EESM, etc.)
- Simulation of position-dependent and saturation effects (higher harmonics)
- Consideration of asymmetric effects (multisaliency)
- Physically correct simulation of dedicated electrical faults in the inverter and the motor
- Parametrization via preprocessing either with FEM data or linear parameters
- Scalable real-time performance

➡ Continuous GDM development, preliminary versions available from engineering
dSPACE Generic Drive Model - Demo at World Conference

Demo Features

- **Six-phase** synchronous motor with external excitation (EESM)
- Inverter model with **discontinuous conduction** mode support
- Resolver and **encoder** simulation
- Embedded on the latest SCALEXIO FPGA base board (DS6602)

→ See you at the demo
Key Takeaways

- Cutting-edge simulation platforms for highest dynamic
- Ready-to-use model and function libraries for processor and FPGA
- Seamless testing at all development stages
- Simulation of various position sensors
- High scalability due to modular SCALEXIO real-time hardware
With us, mobility switches to electric even faster.
Important Information!

© 2019, dSPACE GmbH
All rights reserved. Written permission is required for reproduction of all or parts of this publication.
The source must be stated in any such reproduction.
This publication and the contents hereof are subject to change without notice.
Benchmark results are based on a specific application. Results are generally not transferable to other applications.
Brand names or product names are trademarks or registered trademarks of their respective companies or organizations.